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Abstract: Objective    The present study aimed to investigate the potential roles of spinal microglia and downstream 
molecules in the induction of spinal long-term potentiation (LTP) and mechanical allodynia by tetanic stimulation of the 
sciatic nerve (TSS). Methods    Spinal LTP was induced in adult male Sprague-Dawley rats by tetanic stimulation of the 
sciatic nerve (0.5 ms, 100 Hz, 40 V, 10 trains of 2-s duration at 10-s intervals). Mechanical allodynia was determined using 
von Frey hairs. Immunohistochemical staining and Western blot were used to detect changes in glial expression of inter-
leukin-18 (IL-18) and IL-18 receptor (IL-18R). Results    TSS induced LTP of C-fiber-evoked field potentials in the spinal 
cord. Intrathecal administration of the microglial inhibitor minocycline (200 μg/20 μL) 1 h before TSS completely blocked 
the induction of spinal LTP. Furthermore, after intrathecal injection of minocycline (200 μg/20 μL) by lumbar puncture 
1 h before TSS, administration of minocycline for 7 consecutive days (once per day) partly inhibited bilateral allodynia. 
Immunohistochemistry showed that minocycline inhibited the sequential activation of microglia and astrocytes, and IL-
18 was predominantly colocalized with the microglial marker Iba-1 in the spinal superficial dorsal horn. Western blot re-
vealed that repeated intrathecal injection of minocycline significantly inhibited the increased expression of IL-18 and IL-
18Rs in microglia induced by TSS. Conclusion    The IL-18 signaling pathway in microglia is involved in TSS-induced 
spinal LTP and mechanical allodynia.

Keywords: long-term potentiation; allodynia; glia; interleukin-18

1    Introduction

Tetanic stimulation of the sciatic nerve (TSS) induces 
long-lasting hyperalgesia and allodynia in the rat[1,2]. In 
electrophysiological studies, TSS with identical param-
eters also induces long-term potentiation (LTP) of C-fiber-

evoked field potentials in the spinal cord[3]. The induction 
of spinal LTP is prevented by antagonism of spinal N-
methyl-D-aspartic acid (NMDA) and neurokinin 1 (NK-1) 
receptors, both of which play key roles in the sensitization 
of spinal pain transmission[4-7]. It is, therefore, plausible 
that spinal LTP may be the substrate of sensitization of the 
pain pathway in the spinal cord[3,8]. 

Increasing evidence demonstrates that microglia 
play an important role in modulating the sensitization of 
pain transmission in the spinal cord[9-12]. A previous report 
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showed that intrathecal administration of minocycline, a 
microglial inhibitor, dose-dependently reduces the form-
alin-evoked second phase of flinching responses and the 
carrageenan-induced thermal hyperalgesia, and completely 
blocks the hyperalgesia induced by intrathecal delivery of 
NMDA in rats[13]. Similarly, microglia modulate NMDA-
dependent hippocampal LTP[14-16]. Moreover, cytokines 
released by microglia, including interleukin-1β (IL-1β) 
and tumor necrosis factor-α (TNF-α), modulate the induc-
tion and maintenance of hippocampal LTP by increasing 
the surface expression and phosphorylation of α-amino-3-
hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) re-
ceptors[17,18]. Our studies and others have also revealed that 
disruption of glial function blocks TSS-induced LTP in the 
spinal cord[1,19,20]. Taken together, it is likely that spinal mi-
croglia contribute to the spinal LTP induced by nociceptive 
input. The signaling molecules in microglia and the mech-
anisms mediating this process need to be further explored.

A line of evidence demonstrates that interleukin-18 
(IL-18), a proinflammatory mediator predominantly re-
leased by microglia[21-23], is likely to be an ideal target for 
investigating microglial functions. IL-18 is up-regulated 
in some inflammatory diseases[24], but compared with IL-
1β, few studies have focused on the role of the spinal IL-
18 signaling pathway in the induction of pathological pain. 
The present study aimed to explore the potential roles of 
microglia and IL-18 in the induction of spinal LTP and 
persistent pain behaviors induced by TSS in rats. 

2    Materials and methods

2.1  Animals  Adult male Sprague-Dawley rats (180–350 g) 
(Shanghai Laboratory Animal Center, Chinese Academy 
of Sciences, Shanghai) were housed separately in plastic 
cages under a 12:12 light/dark cycle at 23 ± 2°C and fed 
standard rodent chow and water ad libitum. All experi-
ments were performed in accordance with the guidelines 
of the International Association for the Study of Pain con-
cerning the use of laboratory animals. All procedures were 
approved by the Institutional Animal Care Committee.
2.2  Electrophysiological recording of spinal LTP  The 
procedures were similar to a previous study[25]. Briefly, rats 

were initially anesthetized with intraperitoneal (i.p.) ure-
thane (1.5 g/kg). Laminectomy was performed at vertebrae 
T13–L1 to expose the lumbar enlargement of the spinal 
cord. An intrathecal catheter (PE-10) filled with ~4 μL 
sterile saline was inserted into the intervertebral gap be-
tween L4 and L5 and extended into the subarachnoid space 
for drug injection, then the outer end was plugged. During 
electrophysiological recording, minocycline (Sigma, St. 
Louis, MO, USA; 200 μg/20 μL, dissolved in saline) or sa-
line alone was injected 1 h before tetanic stimulation. Then 
the left sciatic nerve was exposed, carefully isolated, and 
stimulated by bipolar silver electrodes. The spinal column 
was firmly suspended by vertebral clamps rostral and cau-
dal to the exposed cord. The skin above the sciatic nerve 
around the incision was raised and fixed to a metal ring to 
form a skin bath filled with warm paraffin oil. Throughout 
the experiment, animals were artificially ventilated (Cap-
star-100, IITC Life Science, USA), and the electrocardio-
gram, end-tidal CO2, and rectal temperature (37.5–38°C) 
were monitored and controlled within the physiological 
range. 

Field potentials were recorded in the ipsilateral dorsal 
horn at L4–L5, 300–500 μm from the surface of the cord 
with glass microelectrodes (impedance 3–6 MΩ). The low-
pass filter was set at 100 Hz. A single rectangular pulse 
(0.5 ms, 20–30 V), enough to excite afferent C-fibers, 
was applied to the sciatic nerve at 1-min intervals as a test 
stimulus. Stable responses for more than 40 min served 
as baseline control. A conditioning tetanic stimulation 
(0.5 ms, 100 Hz, 40 V, 10 trains of 2-s duration at 10-s 
intervals) was delivered to the sciatic nerve to induce spi-
nal LTP. Four consecutive C-fiber-evoked field potentials 
were averaged, stored, and analyzed by the SMUP-E data-
processing system (Shanghai Medical College, Fudan Uni-
versity, China).
2.3  Lumbar puncture  Lumbar puncture was performed 
1 h before tetanic stimulation and was repeated daily until 
day 7 after surgery. Minocycline (200 μg/20 μL) or saline 
was initially loaded into a 0.25-mL glass syringe with a 
27G needle. Under inhalation anesthesia with isoflurane 
(2% in oxygen), the needle was inserted into the gap be-



Yu-Xia Chu, et al.    Spinal nociceptive responses and glial IL-18 expression 51

tween L4 and L5, and reached the subarachnoid space of 
the lumbar enlargement. The occurrence of an instant-
aneous and rapid tail-flick indicated a successful puncture. 
Drugs were injected over 1 min and then the needle was 
withdrawn. This acute injection method took 2–3 min to 
complete, and rats showed full recovery from anesthesia 
within 10 min. No abnormal motor behavior was observed 
after any injection. 
2.4  Tetanic stimulation of the sciatic nerve  Under chlo-
ral hydrate anesthesia (0.3 g/kg, i.p.) and aseptic condi-
tions, the left sciatic nerve was carefully exposed at mid-
thigh level and separated from neighboring tissues. A pair 
of silver hooks was placed under the nerve for stimulation. 
In the sham group, the exposed left sciatic nerve was 
placed on the hooks without stimulation. The animals were 
allowed to recover from surgery before behavioral tests. 
2.5  von Frey test for mechanical allodynia  Allodynia to 
mechanical stimulation was measured on hind-paws using 
von Frey hairs (2–26 g bending force) 15 h after minocy-
cline or saline injection on days 3, 5, and 7 after TSS or 
sham surgery. The baseline response was measured before 
tetanic stimulation. For the test, each rat was placed in a 
chamber (20 ×10 × 20 cm3) with a customized platform 
made of 3-mm thick Plexiglas containing 1.5-mm diameter 
holes in a 5-mm grid of perpendicular rows throughout the 
entire area. Each rat was allowed 30 min for acclimation. 
After that, a series of von Frey hair stimuli was delivered 
in ascending order of force to the central region of the 
plantar surface of the hind-paw. A particular hair was ap-
plied until buckling occurred. This was maintained for ~2 s. 
A withdrawal response was considered valid only if the 
hind-paw was completely removed from the platform, not 
just a flinch after a single application. Each trial consisted 
of 5 tests at 15-s intervals, and only when the hind-paw 
withdrawal occurred in no less than 3 tests was the value 
of the particular filament in grams considered to be the ‘paw 
withdrawal threshold’ to mechanical stimuli. Otherwise, 
the next-larger filament was tested until the paw withdraw-
al threshold was defined. 
2.6  Immunofluorescent staining  After defined survival 
times, sham and treated rats were finally anesthetized with 

urethane (1.5 g/kg, i.p.) and then perfused through the 
ascending aorta with warm saline, followed by 4% cold 
paraformaldehyde, pH 7.2–7.4. After perfusion, the L4–L6 
segments were removed and postfixed in the same fixative 
for 2–4 h. After serial immersion in 10%, 20% and 30% 
sucrose, the lumbar cord was transected into 35-μm thick 
sections on a cryostat and processed for immunostaining. 
All the sections were blocked with 10% donkey serum in 
0.3% Triton X-100 for 2 h at room temperature (RT) and 
incubated overnight at 4°C with rabbit anti-ionized Ca2+-
binding adaptor protein (Iba-1, a microglial marker, 
1:2 000; Wako, Osaka, Japan) or mouse anti-glial fibrillary 
acidic protein (GFAP, an astrocytic marker, 1:2 000; Sig-
ma). The sections were then incubated for 2 h at 4°C with 
rhodamine red-X-conjugated donkey anti-rabbit second-
ary antibody (1:200; Jackson, West Grove, PA, USA) or 
fluoresceinisothiocyanate (FITC)-conjugated donkey anti-
mouse secondary antibody (1:200; Jackson). 

All sections were examined with a fluorescence mi-
croscope (Leica DMRXA, Germany) and images were 
captured under 10× magnification, using a computerized 
image analysis system (Leica Qwin 500, Germany). Fluo-
rescence power and exposure time were fixed for all im-
ages. Because the morphology of microglia and astrocytes 
is complex and immunoreactive staining includes both cell 
bodies and their processes, cell counts may not sufficiently 
quantify activation. Therefore, the optical density of immu-
noreactive staining for Iba-1 and GFAP was measured. The 
relative density of images was determined by subtracting 
the background density in each image. For each animal, 
the corrected density values of six consecutive sections 
were averaged (n = 4 rats/group). All results are expressed 
as mean ± SEM. Glial activation was quantified with Im-
age J (version 1.38; NIH, USA). Quantitative analyses 
were done in a blinded manner.

For double immunofluorescence, spinal sections were 
firstly immersed in 0.3% H2O2 for 30 min and then blocked 
with TNB buffer (containing 0.1 mol/L Tris-HCl, 0.15 mol/
L NaCl and 0.5% blocking reagent) for 2 h at RT. Then 
the sections were incubated with a mixture of goat anti-IL-18 
(1:500; R&D Systems) and rabbit anti-Iba-1 (1:2 000; Wako), 
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mouse anti-GFAP (1:2 000; Sigma) or monoclonal mouse 
anti-neuron-specific nuclear protein (NeuN, a neuronal 
marker, 1:2 000; Chemicon, Temecula, CA, USA) for three 
days (over three nights) at 4°C, followed by incubation 
with a mixture of biotinylated secondary antibodies and 
FITC-conjugated secondary antibodies for 2 h at 4°C. The 
slices were washed in TNT buffer (containing 0.1 mol/L Tris-
HCl, 0.15 mol/L NaCl and 0.05% Tween-20) for 3 × 5 min  
and then incubated in SA-HRP for 30 min. 

After incubation in Fluorophore Tyramide Working 
Solution for 3–5 min, the slices were washed with TNT 
buffer for 3 × 5 min, and then examined with a confocal 
microscopy system (Leica TCS SP2, Germany) with 488 
nm (green) and 543 nm (red) laser lines. Overlay of the 
green and red signals produces a yellow signal. For each 
experiment, images were processed simultaneously, col-
lected using identical acquisition parameters and analyzed 
using ImagePro Plus (version 6.0; Media Cybernetics, 
USA). 
2.7  Western blots  Under urethane anesthesia (1.5 g/kg, 
i.p.), the animals were rapidly decapitated at the defined 
time points. The L4–L6 spinal cord was rapidly removed 
and homogenized in SDS sample buffer containing a mix-
ture of proteinase and phosphatase inhibitors. Protein con-
centrations were determined and Western blots were con-
ducted. Samples (8 μL protein and 2 μL 5 × sample buffer) 
were resolved in 12% SDS-PAGE and electrophoretically 
transferred onto polyvinylidene difluoride membranes 
(Millipore, Billerica, MA, USA). Blots were blocked with 
5% non-fat milk in Tris-buffered saline (pH 7.5) containing 
0.1% Tween-20 for 2 h, and then incubated overnight at 
4°C with goat anti-IL-18 (1:500; R&D Systems) or goat 
anti-IL-18 receptor (IL-18R) (1:500; R&D Systems). After 
washes, the blots were incubated with horseradish perox-
idase-conjugated donkey anti-goat IgG (1:1 000; Pierce, 
Rockford, IL, USA) for 2 h at 4°C. Meanwhile, the mem-
branes with 37 kD protein were incubated with glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH, 1:10 000; Cell 
Signaling) for 1 h at RT. Proteins were visualized by ECL 
(Pierce). The densities of specific IL-18 and IL-18R bands 
were measured with a computer-assisted imaging analysis 

system (Photoshop). 
2.8  Statistical analysis  In each experiment, the areas of 
four consecutive field potentials recorded at 1-min inter-
vals were averaged. The mean area before drug or saline 
application served as the baseline. The area of C-fiber-
evoked field potentials was expressed as percentage of 
baseline. The summary data from different animals in 
the same group are expressed as mean ± SEM. Statistical 
tests were carried out with SPSS (version 13.0, SPSS Inc., 
USA) or SigmaStat (version 3.5, Systat Software Inc., 
USA). The values (% of baseline) shown in the results 
were obtained at 1 h after TSS or immediately before TSS. 
The effects of electrical stimulation or drugs were ana-
lyzed by one-way repeated measures ANOVA followed by 
Tukey’s post-hoc test when compared within the group and 
by two-way repeated measures ANOVA when compared 
between groups. In immunohistochemistry experiments, 
the effects of tetanic stimulation with or without pre-in-
jection of minocycline on the expression of the microglial 
marker Iba-1 and the astrocytic marker GFAP were ana-
lyzed by one-way ANOVA followed by the LSD post-hoc 
test. In Western blot experiments, the expression of IL-18 
and IL-18R following tetanic stimulation was analyzed by 
one-way ANOVA followed by the LSD post-hoc test. The 
effects of minocycline on the expression of IL-18 and IL-
18R were analyzed using the independent samples t-test.

3    Results 

3.1  Inhibition of TSS-induced spinal LTP and me-
chanical allodynia by glia inhibitor minocycline  Con-
sistent with our previous studies[1,2,25], C-fiber-evoked field 
potentials were evoked by testing stimulation of the sciatic 
nerve (0.5 ms, 20–30 V) at a depth of 300–500 μm from 
the surface of the cord. The average area of C-fiber-evoked 
field potentials significantly increased (198.47 ± 19.52% of 
baseline control, n = 5) following TSS (0.5 ms, 100 Hz, 40 V, 
10 trains of 2-s duration at 10-s intervals), demonstrating the 
occurrence of spinal LTP (Fig. 1A). 

Intrathecal (i.t.) injection of minocycline (200 μg/20 μL) 
1 h before TSS completely blocked the induction of LTP 
(106.13 ± 11.82% of control, n = 5) without affecting the 
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baseline C-fiber-evoked responses (Fig. 1A), suggesting the 
involvement of microglial activation in the induction of 
spinal LTP.

Similar to our previous study[1], bilateral paw with-
drawal thresholds (PWTs) to mechanical stimulation sig-
nificantly decreased following TSS, with identical param-
eters used in the electrophysiological experiments. To test 
the effects of the microglial inhibitor minocycline, repeated 
intrathecal injection of minocycline or saline was made 1 h 

before and on 7 consecutive days (once per day) following 
TSS. The PWTs to von Frey stimulation rapidly decreased 
from 15.00 ± 2.33 to 3.25 ± 0.37 g (P <0.001) ipsilaterally 
and from 14.25 ± 1.00 to 4.25 ± 0.88 g (P <0.001) contral-
aterally on day 7 after TSS in the saline group (Fig. 1B, C). 
However, in the minocycline group, the ipsilateral PWT 
dropped from 15.00 ± 1.36 to 10.00 ± 1.36 g (P <0.05) 
on day 7 after TSS. There was a significant difference of 
PWT compared with the saline group (P <0.01) (Fig. 1B), 

Fig. 1. Minocycline inhibited long-term spinal nociceptive responses induced by tetanic stimulation of the sciatic nerve (TSS). A: Minocycline (200 μg/20 μL, i.t.) 
completely blocked the induction of spinal LTP of C-fiber-evoked field potentials induced by tetanic stimulation (0.5 ms, 100 Hz, 40 V, 10 trains 
of 2-s duration at 10-s intervals) (n = 5, P >0.05). Upper insert: The representative C-fiber-evoked field potentials before (a) and after (b) TSS in 
saline-injection group. B and C are the results of von Frey tests ipsilateral (Ipsi) and contralateral (Cont) to the tetanic stimulation, respectively. 
**P <0.01, ***P <0.001 vs saline group (n = 8 in each group).
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indicating that TSS-induced pain responses were partially 
alleviated by minocycline. Similar results were obtained 
for the contralateral PWTs (Fig. 1C). 

3.2  Minocycline decreased the TSS-induced activation 
of microglia and astrocytes  Iba-1-positive microglia with 
a swollen phenotype were markedly increased following 

Fig. 2. Inhibition of tetanic stimulation-induced sequential activation of microglia and astrocytes by minocycline. A: Time-course of the microglial mark-
er Iba-1 expression following tetanic stimulation of the sciatic nerve (TSS) in normal saline (NS)-injected group and effects of minocycline (Min) 
on the ipsilateral side. Bottom-right figure: Inhibition of the increase in Iba-1-immunoreactivity (Iba-1-IR) by minocycline from day 3 to day 7. B: 
Inhibitory effects of minocycline on the increased expression of the astrocytic marker GFAP-immunoreactivity (GFAP-IR) after tetanus. **P <0.01, 
***P <0.001 vs sham control; #P <0.05, ###P <0.001 vs NS group on the corresponding day following tetanic stimulation (n = 4/group). Scale bars, 100 μm.
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Fig. 3. Inhibition of tetanic stimulation-induced increase in expression of microglial inferleukin-18 (IL-18) by minocycline. A: Time-course of IL-18 ex-
pression in the normal saline (NS) group after tetanic stimulation of the sciatic nerve (TSS) using GAPDH as loading control. B: Peak expression 
of IL-18 on day 3 after TSS was significantly inhibited by repeated administration of minocycline (Min, 200 μg/20 μL). *P <0.05, ***P <0.001 vs 
sham (n = 3/group); ##P <0.01 vs NS (n = 3/group). C: Double immunostaining of IL-18 with Iba-1, GFAP or NeuN on day 3 after TSS. Scale bar, 10 μm.
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TSS (Fig. 2A). The microglial activation started on day 
3 after TSS, with Iba-1 immunoreactivity density being 
16.67 ± 0.52 (P <0.001 vs 12.54 ± 0.43 in the sham group) 
and lasted at least until day 7 (19.50 ± 1.64, P <0.01 vs 
sham). Repeated administration of minocycline reduced 
the staining intensity of microglia (9.96 ± 0.82 on day 3, 
P <0.001 vs normal saline group; 14.21 ± 1.22 on day 7, 
P <0.05 vs normal saline group). Besides, there was no 
change in microglial activation on the contralateral side 
in all groups (data not shown). However, activation of 
astrocytes occurred on day 7 following TSS (15.33 ± 0.89 
vs sham 9.74 ± 0.76, P <0.001) and was suppressed by re-

peated intrathecal injection of minocycline 1 h before and 
for 7 consecutive days (once per day) following TSS (8.07 
± 0.75, P <0.001 vs normal saline group) (Fig. 2B).
3.3  Minocycline attenuated the up-regulation of IL-18 
and IL-18R  IL-18 has been proposed to be predominantly 
released from microglia, so the effects of minocycline on 
the expression of IL-18 were investigated. After TSS, IL-
18 expression increased from day 1 (relative intensity, 
67.92 ± 7.78, P <0.05 vs sham 35.02 ± 1.59), peaked on 
day 3 (relative intensity, 80.97 ± 5.42, P <0.001 vs sham) 
and was maintained at least to day 7 (relative intensity, 
57.23 ± 3.24, P <0.001 vs sham) (Fig. 3A). In addition, the 

Fig. 4. Inhibition of tetanic stimulation-induced increase in expression of interleukin-18 receptor (IL-18R) by minocycline. A: Western blots show that the ex-
pression of IL-18R significantly increased from day 3 to day 7 following tetanic stimulation of the sciatic nerve (TSS) in the normal saline (NS) group. 
B: The increase in IL-18R expression on day 7 was inhibited by repeated administration of minocycline (Min, 200 μg/20 μL). *P <0.05, ***P <0.001 vs 
sham (n = 3/group); #P <0.05 vs NS (n = 3/group). C: Double immunostaining results show that IL-18R colocalized with GFAP but not with Iba-1 
or NeuN. Arrows indicate positive staining for IL-18R. Scale bars, 10 μm.
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increased IL-18 expression was inhibited by minocycline 
on day 3 (relative intensity, 45.78 ± 2.27, P <0.01 vs sa-
line) (Fig. 3B). To identify the cell type that expressed IL-
18, spinal sections were double immunostained with mixed 
antibodies to IL-18 and Iba-1, GFAP or NeuN on day 3 
following TSS in the saline group. The results showed co-
localization of IL-18 predominantly with Iba-1 and slightly 
with GFAP, but not with NeuN (Fig. 3C).

It has been reported that IL-18 mediates the interac-
tion between microglia and astrocytes via binding to IL-
18Rs[21,26], so the effects of minocycline on IL-18R expres-
sion were investigated. Compared with the sham group, 
IL-18R expression gradually increased from day 3 (relative 
intensity, 51.51 ± 8.71, P <0.05 vs sham 32.87 ± 3.57) to 
day 7 (relative intensity, 75.9 ± 7.58, P <0.001 vs sham) 
following TSS (Fig. 4A). However, this increase was inhib-
ited on day 7 by repeated injection of minocycline (relative 
intensity, 48.44 ± 2.92, P <0.05 vs saline) (Fig. 4B).

4    Discussion

Here, we mainly found that the disruption of microglia 
prevented the induction of spinal LTP and alleviated me-
chanical allodynia induced by TSS, and that the microglial 
inhibitor minocycline inhibited the TSS-induced increase 
in IL-18 expression, which occurred mainly in microglia in 
the dorsal horn. This study revealed for the first time that 
IL-18 and its receptor are implicated in TSS-induced spinal 
LTP and allodynia, supporting the hypothesis that chronic 
pain is mediated by the sequential activation of microglia 
first and then astrocytes[27-30].

TSS-induced LTP of C-fiber-evoked field potentials 
in the spinal cord has been proposed to be the process of 
central sensitization underlying spinal nociception[25,31,32]. 
In the present work, we found that disruption of micro-
glial actions blocked spinal LTP and inhibited mechanical 
allodynia. This is consistent with previous reports that 
minocycline attenuates the hyperexcitation of dorsal horn 
neurons following traumatic spinal cord injury and signifi-
cantly attenuates the allodynia and hyperalgesia following 
chronic constriction injury in rats[33,34]. Our results provide 
new evidence for the involvement of microglial activation 

in the potentiation of synaptic plasticity in the spinal pain 
pathway. However, neurochemical mechanisms underlying 
the modulation of pain plasticity by microglia are poorly 
understood. 

Compelling evidence suggests that activation of mi-
croglia plays a vital role in the induction of hippocampal 
LTP by releasing cytokines[35-37]. It has been shown that 
minocycline reverses β-amyloid-mediated inhibition of 
NMDA receptor-dependent hippocampal LTP by inhibiting 
microglial activation[38]. Moreover, proinflammatory cytok-
ines released mainly from microglia, including IL-1β, IL-
18 and TNF-α, contribute to the modulation of hippocam-
pal LTP by increasing the translocation and trafficking of 
AMPA receptors[39,40]. Recent reports suggest that spinal 
LTP may share a similar mechanism with hippocampal 
LTP[40,41]. Hippocampal LTP underlies memory and learn-
ing. Central sensitization means an increase in synaptic ef-
ficacy upon nerve injury or inflammation. These two phe-
nomena have some striking similarities in the expression 
and functional changes of NMDA and AMPA receptors. 
However, there are still many differences, such as different 
roles of neurokinin 1 and cyclooxygenase 2[8]. In addition, 
under pathological conditions, over-activated glia and up-
regulated proinflammatory cytokines cause impairment 
of LTP in the hippocampus but facilitate LTP in the spinal 
dorsal horn. Therefore, further investigation is required to 
provide a reasonable explanation for these differences.

ATP is an activity-dependent signaling molecule in 
the synaptic transmission of peripheral and spinal nocicep-
tion and in communication between neurons and glia by 
activating multiple P2X receptors in glia[42-44]. It has been 
reported that ATP released from presynaptic nerve termi-
nals contributes to the induction of hippocampal LTP, sug-
gesting a role for ATP in the modulation of synaptic effi-
ciency[45]. Our recent study showed that in the spinal cord, 
P2X7 receptors (P2X7Rs) are predominantly expressed in 
microglia, and that P2X7R antagonists and P2X7-siRNA 
prevent TSS-induced spinal LTP and reduce mechanical al-
lodynia[46], suggesting that microglial P2X7Rs are required for 
plastic changes in pain-sensitive neurons in the dorsal horn. 

It has been shown that IL-18, a downstream mol-
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ecule of P2X7R, is mainly produced by microglia[47,48]. The 
present results showed that the microglial inhibitor mi-
nocycline not only inhibited TSS-induced spinal LTP but 
also reduced the increase in microglial IL-18 expression 
induced by TSS. Notably, we found increases in the ex-
pression of both IL-18 in microglia on day 3 and IL-18Rs 
on day 7 after TSS. This is consistent with previous reports 
that microglial IL-18 expression significantly increases on 
day 3 after excitotoxic damage and IL-18-mediated inter-
action between spinal microglia and astrocytes enhances 
neuropathic pain[21,26]. Therefore, it is conceivable that the 
inhibition of TSS-induced spinal LTP and allodynia by 
minocycline may be attributed to the inhibition of micro-
glial IL-18 release and in turn the inactivation of astrocytes 
via decreased binding to IL-18Rs. Also, P2X4 receptors 
(P2X4Rs) are specifically expressed in microglia and in-
volved in the induction of spinal LTP and neuropathic 
pain[49,50]. Consequently, in addition to P2X7Rs, P2X4Rs 
may be at least partly implicated in the minocycline-
induced blockade of TSS-induced spinal LTP.

In agreement with our previous study[1], TSS induced 
bilateral mechanical allodynia, also called mirror-image 
pain. It has been proposed that glia and proinflammatory 
cytokines play key roles in the creation of mirror-image 
pain[51]. We showed that both ipsi- and contralateral me-
chanical allodynia were alleviated by spinal administration 
of minocycline, strongly suggesting an important role of 
microglia in TSS-induced mirror-image pain. In support 
of this view, a study showed that minocycline relieves the 
long-lasting contralateral allodynia and the increase in mi-
croglial expression induced by carrageenan in mice[52]. 

Taking these findings together, we speculate that mi-
croglia are activated by TSS to release proinflammatory 
cytokines, including IL-18, which in turn activates astro-
cytes by binding to IL-18Rs to release more cytokines in 
the spinal cord. All of these cytokines released from mi-
croglia and astrocytes, including IL-1β, TNF-α and IL-18, 
act on the postsynaptic neuronal membrane to increase the 
insertion and phosphorylation of AMPA receptors. Thus, 
the net effects strengthen the synaptic efficacy of nocicep-
tive transmission in the spinal cord. 
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